The FAIR facility

Ulrich Wiedner Ruhr-Universität Bochum

Williamsburg, 4-June-2010

Research Communities at FAIR

Development of Project Staging

2003	Recommendation by WissenschaftsRat – FAIR Realisation in three stages									
2005		Entire Facility Baseline Technical Report								
2007		Phase A								
2009	Module 0 SIS100	Module 1 expt areas CBM/HADES and APPA	Module 2 Super-FRS fixed target area NuSTAR	Module 3 pbar facility, incl. CR for PANDA, options for NuSTAR	Module 4 LEB for NuSTAR, NESR for NuSTAR and APPA, FLAIR for	Module 5 RESR nominal intensity for PANDA & parallel operation with	Module 6 SIS300 HESR Cooler ER			

Development of Project Staging

2003	Recommendation by WissenschaftsRat – FAIR Realisation in three stages									
2005		Entire Facility Baseline Technical Report								
2007			Pha			Phase B SIS300				
2009	Module 0 SIS100	Module 1 expt areas CBM/HADES and APPA IOdularized	Module 2 Super-FRS fixed target area StanteVers	Module 3 pbar facility, incl. CR for PANDA, PANDA, NuSTAR	Module 4 LEB for NuSTAR, NESR for NuSTAR and APPA, ELAIR for	Module 5 RESR nominal intensity for PANDA & parallel operation with	Module 6 SIS300 HESR Cooler ER			

|--|

Total civil construction Modules 0 - 3400

Experiment funding	78
--------------------	----

FAIR GmbH personnel and running costs	47
---------------------------------------	----

Grand Total Modules 0 - 3 1027

all values in M€

Firm Commitments

FAIR Countries	Total declared Contribution (k€)
Austria	5.000
China	12.000
Finland	5.000
France	27.000
Germany	705.000
Great Britain	8.000
Greece	4.000
India	36.000
Italy	42.000
Poland	23.740
Romania	11.870
Russia	178.050
Slovenia	12.000
Slovakia	6.000
Spain	19.000
Sweden	10.000
Total	1.104.660
Firm Commitments	1.038.660

not firm for the first batch

B. Sharkov

Firm Commitments

FAIR Countries	Total declared Contribution (k€)
Austria	5.000
China	12.000
Finland	5.000
France	27.000
Germany	705.000
Great Britain	8.000
Greece	4.000
India	36.000
Italy	42.000
Poland	23.740
Romania	11.870
Russia	178.050
Slovenia	12.000
Slovakia	6.000
Spain	19.000
Sweden	10.000
Total	1.104.660
Firm Commitments	1.038.660

not firm for the first batch

Kingdom of Saudi-Arabia signed the Declaration to contribute at least 1 %

B. Sharkov

Firm Commitments

FAIR Countries	Total declared Contribution (k€)	
Austria	5.000	
China	12.000	
Finland	5.000	
France	27.000	
Germany	705.000	
Great Britain	8.000	
Greece	4.000	
India	36.000	
Italy	42.000	
Poland	23.740	
Romania	11.870	Primeministe
Russia	178.050	signed. Offic
Slovenia	12.000	publicized la
Slovakia	6.000	
Spain	19.000	
Sweden	10.000	
Total	1.104.660	
Firm Commitments	1.038.660	not firm for

er Putin cially st week.

Kingdom of Saudi-Arabia signed the Declaration to contribute at least 1 %

the first batch

B. Sharkov

ПРАВИТЕЛЬСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ

РАСПОРЯЖЕНИЕ

от 27 февраля 2010 г. № 245-р

MOCKBA

1. B соответствии 00 статьей 11 Федерального закона "Омеждународных договорах Российской Федерации" одобрить представленные Государственной корпорацией по атомной энергии "Росатом" согласованные с МИДом России и другими заинтересованными федеральными органами исполнительной власти и предварительно проработанные с государствами - участниками проекта по сооружению и эксплуатации Европейского центра по исследованию ионов и антипротонов (ФАИР) в г. Дармштадте (ФРГ) проекты Конвенции о сооружении и эксплуатации Европейского центра по исследованию ионов и антипротонов (ФАИР) и Заключительного акта конференции полномочных представителей по сооружению и эксплуатации Европейского центра по исследованню ионов и антипротонов (ФАИР) (прялагаются).

2. Поручить Государственной корпорации по атомной энергии "Росатом" провести при участии МИДа России переговоры и по достижении договоренности подписать от имени Правительства Российской Федерации документы, указанные в пункте 1 настоящего распоряжения, разрешив в случае необходимости вносить в проекты этих документов изменения, не имеющие принципиального характера.

 Назначить Государственную корпорацию по атомной эмергии "Росатом" участником компании с ограниченной ответственностью "Европейский центр по исследованию новов и антипротовов (ФАИР)".

4. Государственной корпорации по атомной энергии "Росатом":

после подписания документов, указанных в пункте 1 настоящего распоряжения, уведомить в установленном порядке государства участники Конвенции о сооружения и эксплуатации Европейского центра 2

по исследованию ионов и антипротонов (ФАИР) о том, что участником компании с ограниченной ответственностью "Европейский центр по исследованию ионов и антипротонов (ФАИР)" от Российской Федерации выступит Государственная корпорация по атомной энергии "Росатом";

обеспечить выполнение обязательств Российской Федерации, вытекающих из Конвенции о сооружении и эксплуатации Европейского центра по исследованию понов и антипротонов (ФАИР).

5. Государственной корпорации по атомной энергии "Росатом" и Минфину России при формировании проекта федерального бюджета на очередной финансовый год и плановый период предусматривать бюджетные ассигнования на выполнение обязательств Российской Федерации, вытекающих из Конвенции о сооружении и эксплуатации Европейского центра по исследованию ионов и антипротовов (ФАИР), в том числе в отпошении обязательств по взносам в сооружение и эксплуатацию Европейского центра по исследованию ионов и антипротовов (ФАИР).

В.Путин

ПРАВИТЕЛЬСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ

РАСПОРЯЖЕНИЕ

от 27 февраля 2010 г. № 245-р

Dear Colleagues, We are happy to inform you that the Decree of the Russian Government on Russian participation in FAIR project was issued and published. Its number is 245-p of February 27, 2010. By this decision Russian Government approved the project of FAIR Convention with Russian contribution to FAIR construction in the amount of 178,05 MEuro (prices of January 2005) and authorized the State Corporation "Rosatom" to be Russian Shareholder of FAIR Company.

Sincerely, O.Patarakin, P.Bogdanov.

документов изменения, не имеющие принципиального характера.

 Назначить Государственную корпорацию по атомной энергии "Росатом" участником компании с ограниченной ответственностью "Европейский центр по исследованию новов и антипротовов (ФАИР)".

4. Государственной корпорации по атомной энергии "Росатом":

после подписания документов, указанных в пункте 1 настоящего распоряжения, уведомить в установленном порядке государстваучастники Конвенции о сооружении и эксплуатации Европейского центра

IN THE REPORT OF A DATE OF

В.Путин

1259722 dea

Roadmap to foundation the FAIR company

Roadmap to foundation the FAIR company

Roadmap

- Start of construction activities 2010/11 +1 year
- Schedule is driven by <u>civil construction</u>
- Aim for earliest commissioning of accelerators and respective experiments

Module	Construction time (months)	Ready for installation	
0	72	2015 / 16	+1 year
1	28	2015 / 16	+1 year
2	60	2016	
3	60	2016	+1 year

Ulrich Wiedner

Hadron Physics and its Hot Topics

Standard Model of FUNDAMENTAL PARTICLES AND INTERACTIONS

The Standard Model summarizes the current knowledge in Particle Physics. It is the quantizer theory that includes the Boory of st interactions (illusifian dependynamics or DCD) and the unified theory of weak and electromagnetic interactions (electroweak). Gazvity is included on this chart because it is one of the "Ansamilia interactions even though not part of the "Ansadard Model."

FERMIONS

matter constituents spin = 1/2, 3/2, 5/2, ...

n - per P

Leptor	15 spin	= 1/2	Q	Quarks spin = 1/2					
Flavor	Mass GeV/c ²	Electric charge	Rates	r.	Approx. Mass GeV/c ²	Electric charge			
Ve electron neutrino	<1×10 ⁻⁸	0	U up		0.003	2/3			
e electron	0.000511	-1	d do	wn	0.006	-1/3			
ν_{μ} muon mutrino.	<0.0002	0	C chi	in the	1.3	2/3			
µ muon	0.105	-1	S str	ange	0.1	-1/3			
ν_{τ} teu neutrino	<0.02	0	t top	P	175	2/3			
7 194	1.7771	-1	b bo	ttom	4.3	-1/3			

Spin is the intrinsic angular reconcentant of particles. Spin is given in wrists of 0, which is the quardum and of angular momentum, where h = h/2s + 6.58 10 ¹⁵ GeV s = 1.05x10⁻¹⁴ F L

Electric charges are given in sents of the proton's charge. In SI such the electric charge of the proton is 1 60-10 Th coulombs

The energy unit of particle physics is the electronical text, the energy gassed by one elecfrom in coming a potential difference of one wall. Masses are given in GeVi ¹ (presented $\xi = mc^2$), where 1 GeV = 10⁶ eV = 140-10⁻¹⁶ peak. The mass of the proton is 0.938 GeVi ¹ - 1 67-10 ^{JT} kg

PROPERTIES OF THE INTERACTIONS

force carriers BOSONS

Value Mass. GeV/c ² Electric charge 2 0 0 W 80.4 -1 W ⁺ 80.4 +1 Z ⁰ 91.187 0			
Name	Mens GeV/c ²	Electric charge	Na
γ photon	0	0	9
W-	80.4	-1	Color
W*	80.4	+1	Each o
Z ⁰	91.187	0	These

spin = 0, 1, 2, trong (color) spin = 1 Mass Electric Ginivic² Charge 6 0

10.00 Charge

ark catties one of three types of charge:" also called "color charge." hargen have nothing to do with the I voible light. These are eight possible types of color charge for pluons. Just as electric

Lally-chileged particles relevant by exchanging photons, in strong inferactions online charged par-ticles minuted by exchanging places. Leptons, photons, and W and 2 bosons have no strong emetarthore and hence no tolor charge.

Quarks Confined in Mesons and Baryons

One carried isolate quarks and gluons; they are confined in color neutral particles called Nadexins. This confinement (binding) emails from multiple exchanges of gluons among the color charged constituents. As color charged particles (quarks and gluons) move apart, the energiest of the second s can be considered and the second services and an energy second se nations, mesons og and baryons opp-

Residual Strong Interaction

The strong binding of aplor mestral photons and neutrons to form model in due to residual strong interactions between their miles charged constituents. It is similar in the residual electrical interaction that binds electrically neutral atoms to form ecolocules. It can also be prevend as the exchange of menore between the hadronic

ons ge	g and A	Intibar	yons e	94								Mesons qq					
Baryon Theare and	and formi about 1201	onix faille	era. Repaire 1		Property	Gravitational			Str Fundamental			Mar. There is		d types of	-		
-	Courtest.	Electric charges	Mass. General	800 ·	Acts on	Mass - Energy	Flavor	Electric Charge	Color Charge	See Resultual Strong Interaction Robe	-	-	1	Langer Manager	Alert.	-	
armint	uud		4.938	1/2	Particles experiencing:	Al	Quarks, Leptons	Electrically charged	Quarks, Gluons	Hadrons	-	-	uđ				
-		1			Particles mediating:	Graviton (not yet observed)	W+ W- Z ⁰	γ	Gluons	Mesons	×-	1		1	0.160		
proton	uua	-4	0.938	10	Strength where is recovery 32-17 m	50-41	0.8	1	25	Not applicable	^	kaon	su	-	0.494	1.5	
neutroix	udd		0.940	1/2	to two u quarks at:	10-41	10-4	1	50	to quarks	ρ^+	mo	ud	-12	0.770	1	
lambda	uds	4	1.115	10	Tero protons in theleses	10-36	10-7	1	Not applicable to hadrons	20	B ⁰	8-cary	db		5,279		
(mega	\$\$\$	4	1.672	3/2		State of the local division of the	And Designation of the local division of the local division of the local division of the local division of the	and the second second	the second second	The Party number of	ne	-	εč	.0	2.985		

Matter and Antimatter

For every particle type there is a consequenting antiparticle type, threaded by a har over the particle symbol portex a set - charge is showed Particle and antiparticle have identical more and you but opposite sharpes have electrically resided bosons (e.g., 27) is well a, -cc, but not K² = did are they own antipletates

Figures

n л Ω^{*}

These diagrams are at articl's conception of physical processes. They are not exact and have no meaningful scale. Green shaded areas represent the cloud of gluons or the gluon held, and red lines the quark paths

produce various hadhors plus very high mess particles such as 2 beauty. Essenti such as the one are care built care sheld office the life structure of matter

The Particle Adventure

Visit for assertneeting web feature the Particle Adventure at http://ParticleAdventure.org

This chart has been made possible by the generous support of:

(CL Department of Energy U.S. National Science Foundation Lawrence Berkeley National Laboratory Vandsed Linear-Academated Center Amanual Physical Society, Division of Particles and Fields DURLE MONTHIS INC.

02000 Contemporary Physics Education Project, CPEP is a non-profit organiza-Tion of Irachers, physiols, and relaxities. Send rule to CRIP A6:30-308, Lawerner Bethelig Matimud Laboratory Berkelig CA, 54720. For information on charts, tard materials. Rando on classicon activities, and workshops, see

http://CPEPweb.org

PROPERTIES OF THE INTERACTIONS					
Interaction Property	Gravitational	Weak Electromagnetic (Electrowsak)		Strong Fundamental Residual	
Acts on:	Mass – Energy	Flavor	Electric Charge	Color Charge	See Residual Strong Interaction Note
Particles experiencing:	All	Quarks, Leptons	Electrically charged	Quarks, Gluons	Hadrons
Particles mediating:	Graviton (not yet observed)	W+ W- Z ⁰	γ	Gluons	Mesons
Strength relative to electromag 10 ⁻¹⁸ m for two u quarks at: 3×10 ⁻¹⁷ m	10-41 10-41	0.8 10 ⁻⁴	1	25 60 Not applicable	Not applicable to quarks
for two protons in nucleus	10-36	10-7	1	to hadrons	20

Basic underlying theory is known: QCD ... but

PROPERTIES	OF THE	INTERACTIONS
------------	--------	--------------

Interaction Property	Gravitational	Weak	Electromagnetic oweak)	Str	ong Residual
Acts on:	Mass – Energy	Flavor	Electric Charge	Color Charge	See Residual Strong Interaction Note
Particles experiencing:	All	Quarks, Leptons	Electrically charged	Quarks, Gluons	Hadrons
Particles mediating:	Graviton (not yet observed)	W+ W- Z ⁰	γ	Gluons	Mesons
Strength relative to electromag 10 ⁻¹⁸ m for two u quarks at: 3×10 ⁻¹⁷ m	10 ⁻⁴¹ 10 ⁻⁴¹	0.8 10 ⁻⁴	1	25 60 Not applicable	Not applicable to quarks
for two protons in nucleus	10 ⁻³⁶	10-7	1	to hadrons	20

Basic underlying theory is known: QCD ... but

PROPERTIES	OF THE	INTERACTIONS
------------	--------	--------------

Property	Gravitational	Weak	Electromagnetic oweak)	Stro Fundamental	ong Residual
Acts on:	Mass – Energy	Flavor	Electric Charge	Color Charge	See Residual Strong Interaction Note
Particles experiencing:	All	Quarks, Leptons	Electrically charged	Quarks, Gluons	Hadrons
Particles mediating:	Graviton (not yet observed)	W+ W- Z ⁰	γ	Gluons	Mesons
Strength relative to electromag 10 ⁻¹⁸ m for two u quarks at: 3×10 ⁻¹⁷ m	10 ⁻⁴¹ 10 ⁻⁴¹	0.8 10 ⁻⁴	1	25	Not applicable to quarks
for two protons in nucleus	10 ⁻³⁶	10-7	1	to hadrons	20

Hadron Physics at FAIR with PANDA

The PANDA Detector

Ulrich Wiedner

PANDA Collaboration

• At present a group of **420 physicists** from 54 institutions and 16 countries

Austria – Belaruz – China – France – Germany – India – Italy – The Netherlands – Poland – Romania – Russia – Spain – Sweden – Switzerland – U.K. – U.S.A.

Basel, Beijing, Bochum, IIT Bombay, Bonn, Brescia, IFIN Bucharest,
Catania, IIT Chicago, AGH-UST Cracow, JGU Cracow, IFJ PAN Cracow,
Cracow UT, Edinburgh, Erlangen, Ferrara, Frankfurt, Genova, Giessen,
Glasgow, GSI, FZ Jülich, JINR Dubna, Katowice, KVI Groningen, Lanzhou,
LNF, Lund, Mainz, Minsk, ITEP Moscow, MPEI Moscow, TU München,
Münster, Northwestern, BINP Novosibirsk, IPN Orsay, Pavia,
IHEP Protvino, PNPI St.Petersburg, KTH Stockholm, Stockholm,
Dep. A. Avogadro Torino, Dep. Fis. Sperimentale Torino, Torino Politecnico,
Trieste, TSL Uppsala, Tübingen, Uppsala, Valencia, SINS Warsaw,
TU Warsaw, AAS Wien

Spokesperson: Ulrich Wiedner (Bochum)

http://www.gsi.de/panda

Hadron Structure

The Nucleon (as composed by fundamental particles)

Gluon polarization results from SMC, HERMES, and COMPASS, in comparison with theoretical fits

Elastic scattering

... reveals transverse quark distribution in coordinate space

Deep inelastic scattering

... reveals longitudinal quark distribution in momentum space

Common description:

Generalized Parton Distributions (GPDs)

Electromagnetic Processes:

$$\overline{p}p \rightarrow \gamma \gamma$$

Handbag diagram separates a soft part described by GPDs from a hard $q\overline{q}$ annihilation process

Predicted rates*: several thousand / month or above

Exp. problem: Background channels like $\pi^0 \gamma$ or $\pi^0 \pi^0$ 5× - 100× stronger.

*A. Freund, A. Radyushkin, A. Schäfer, and C. Weiss, Phys. Rev. Lett. 90, 092001 (2003). Ulrich Wiedner

Related exclusive annihilation processes studies:

⇒ check of factorization.

Electromagnetic form factors of the proton

... can be extracted from the cross section: $\overline{p} + p \rightarrow e^+ + e^-$

$$\frac{d\sigma}{d(\cos\theta^*)} = \frac{\pi\alpha^2\hbar^2c^2}{2xs} \left[\left| G_M \right|^2 \left(1 + \cos^2\theta^* \right) + \frac{4m_p^2}{s} \left| G_E \right|^2 \left(1 - \cos^2\theta^* \right) \right]$$

(first order QED prediction)

Data at high Q^2 test QCD predictions for the asymptotic behavior of the form factors and spacelike-timelike equality at corresponding Q^2 .

PANDA will measure the form factors in the biggest Q^2 range for a single experiment up to values of ~20 GeV²/c⁴ (beam time dependent).
Hadron Spectroscopy

Positronium

X and Y mesons

 Z^+ (4430) - a new state of matter (tetraquark?) decaying into $\pi^+\psi'$

 $M = (4.433 \pm 0.004 \text{ (stat)} \pm 0.001 \text{ (syst)}) \text{ GeV}$ $\Gamma = (0.044^{+0.017}_{0.011} \text{ (stat)}^{+0.030}_{0.011} \text{ (syst)}) \text{ GeV}$ $\mathcal{E}(B \to KZ(4430) \times \mathcal{E}(Z \to \pi^+ \psi') = (4.1 \pm 1.0 \text{ (stat)} \pm 1.3 \text{ (syst)}) \times 10^{-5}$

> PRL 100, 142001 (2008) arXiv:0708.1790 [hep-ex]

The Standard Model - What is the world made of? - Hadrons, Barvons, and Mesons

Like social elephants, quarks only exist in groups with other quarks and are never found alone. Composite particles made of guarks are called

Although individual guarks have fractional electrical charges, they combine such that hadrons have a net integer electric charge. Another property of hadrons is that they have no net color charge even though the guarks themselves carry color charge (we will talk more about this later).

There are two classes of hadrons (try putting your mouse on the elephants):

guarks and one down guark (uud), protons are baryons. So are neutrons ...contain one guark (g) and one antiguark (\overline{q}).

MESONS

GLOSSARY

HOME

One example of a meson is a pion (π^+), which is made of an up guark and a down anitiguark. The antiparticle of a meson just has its guark and

antiquark switched, so an antipion (π^{-}) is made up a down guark and an up antiguark.

Because a meson consists of a particle and an

antiparticle, it is very unstable. The kaon (K⁻) meson lives much longer than most mesons, which is why it was called "strange" and gave this name to the strange quark, one of its components.

A weird thing about hadrons is that only a very very very small part of the mass of a hadron is due to the quarks in it.

Because they are made of two up quarks and one down quark (uud), **protons** are baryons. So are **neutrons** (udd).

One example of a meson is a pion (π^+), which is made of an up quark and a down anitiquark. The antiparticle of a meson just has its quark and

antiquark switched, so an antipion (π^{-}) is made up a down quark and an up antiquark.

Because a meson consists of a particle and an

antiparticle, it is very unstable. The kaon (K^-) meson lives much longer than most mesons, which is why it was called "strange" and gave this name to the strange quark, one of its components.

A weird thing about hadrons is that only a very very very small part of the mass of a hadron is due to the quarks in it.

Glueballs

A few % of the proton mass is generated due to the Higgs mechanism.

A few % of the proton mass is generated due to the Higgs mechanism.

Most of the proton mass is created by the strong interaction.

A few % of the proton mass is generated due to the Higgs mechanism.

Most of the proton mass is created by the strong interaction.

HOW ??????

A few % of the proton mass is generated due to the Higgs mechanism.

Most of the proton mass is created by the strong interaction.

HOW ??????

We do not understand most of the baryonic mass of the Universe.

A few % of the proton mass is generated due to the Higgs mechanism.

Most of the proton mass is created by the strong interaction.

HOW ??????

We do not understand most of the baryonic mass of the Universe.

Glueballs gain their mass solely by the strong interaction and are

A few % of the proton mass is generated due to the Higgs mechanism.

Most of the proton mass is created by the strong interaction.

HOW ??????

We do not understand most of the baryonic mass of the Universe.

Glueballs gain their mass solely by the strong interaction and are therefore an unique approach to the mass creation by the strong

A few % of the proton mass is generated due to the Higgs mechanism.

Most of the proton mass is created by the strong interaction.

HOW ??????

We do not understand most of the baryonic mass of the Universe.

Glueballs gain their mass solely by the strong interaction and are therefore an unique approach to the mass creation by the strong interaction.

Glueballs

Glueballs, closed fluxtubes and η(1440) Ludvig Faddeev, Antti Niemi and Ulrich Wiedner Phys.Rev.D70:114033, 2004

Crystal Barrel $p\overline{p} \rightarrow \pi^0 \pi^0 \pi^0$ Dalitz plot

700000 events = 6×700000 entries

Reconstruction of invariant mass: detector resolution dependent

Reconstruction of invariant mass: detector resolution dependent

The glueball spectrum

Hadron Interactions

Hypernuclear physics: a multicultural activity

Hypernuclear physics: a multicultural activity

nuclear reaction

Hypernuclei offer a bridge between traditional nuclear physics , hadron physics and astrophysics

It helps to explore fundamental questions like

- How do nucleons and nuclei form out of quarks?
 - Can nuclear structure be derived quantitatively from QCD?
 - Properties of strange baryons in nuclei and structure of QCD vacuum?
 - Can we constrain the interior of neutron stars?

astrophysics

Adding the third dimension to the nuclear chart

Production of Hypernuclei at PANDA

Production of Hypernuclei at PANDA

PANDA Detector set-up for hypernuclei physics

- $\theta_{lab} < 45^{\circ}$: $\overline{\Xi}, K^{-}$ trigger (PANDA)
- $\theta_{lab} = 45^{\circ} 90^{\circ}$: Ξ -capture, hypernucleus formation
- $\theta_{lab} > 90^{\circ}$: γ -detection Euroball at backward angles

PANDA Detector set-up for hypernuclei physics

- $\theta_{lab} < 45^{\circ}$: $\overline{\Xi}, K^{-}$ trigger (PANDA)
- $\theta_{lab} = 45^{\circ} 90^{\circ}$: Ξ -capture, hypernucleus formation
- $\theta_{lab} > 90^{\circ}$: γ -detection Euroball at backward angles

Antiproton-Nucleus Interaction

$$\overline{p}A \twoheadrightarrow \psi + (A - 1)$$

ψ (cc̄) decays into DD̄

D mesons interact with rest nucleus

Ulrich Wiedner

* ignoring c (or c) - nucleus interaction

The long-term future at FAIR

Accelerator Setup

Polarized \overline{p}

idea: ENC@FAIR

s^{1/2} > 10GeV (3.3GeV e⁻ ↔ 15GeV p) polarised e⁻ (> 80%) ↔ polarised p / d (> 80%) (transversal + longitudinal) using the PANDA detector

 $L > 10^{32} \ 1/cm^2 s$

Common effort of German Universities (Bonn, Mainz, Dortmund) plus collaboration with Research Centres FZJ, DESY, GSI, ...

Thank you for your attention!